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Phase transition of a quasi-one-dimensional system
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The statistical mechanics of the quasi-one-dimensional system of DNA is studied with the Morse and
Deng-Fan potentials for the interstrand hydrogen bonds of nucleotide pairs. The intrastrand interactions be-
tween nucleotides are characterized by a simple harmonic potential in which the coupling strength has a
significant effect on the phase transition of the DNA system.
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I. INTRODUCTION

Phase transitions are fascinating physical phenomen
systems that undergo structural changes due to chang
the degrees of freedom or symmetry. To describe the p
nomena, it is advantageous to consider exactly solvable m
els with the underlying mechanisms as approximations, s
that corrections to the models may then be made to acc
for any experimental discrepancies.

In this paper, we shall study the denaturation of the qu
one-dimensional system of the DNA double helix with tw
exactly solvable potentials. The two DNA strands are h
together by double and triple hydrogen bonds depending
the types of nucleotide base pairs in the strands. For simp
ity, we shall consider an average interaction strength
tween the strands. As an application, we may cons
poly(A-T)-poly(A-T) DNA. The intrastrand interactions ar
of the covalent type and are much stronger than the hydro
bonds. In this sense, the DNA helix forms a quasi-o
dimensional structure.

The subject of the denaturation of DNA has had a lo
history@1#, with theoretical studies based on the Ising mod
in which each base pair is assumed to be either open~bro-
ken! or intact. A more sophisticated approach is the latt
dynamical theory, which is based on the modified se
consistent phonon approach introduced in 1984@2# with the
real configurations of DNA molecules given by experime
and assumed harmonic potentials for the nonhydrogen bo
and Morse potentials for the hydrogen bonds. However,
tractable calculations, a linear lattice dynamical theory
generally been considered with Morse potentials replaced
harmonic ones.

It is well known that a useful DNA model must be no
linear in nature. The introduction of the idea of nonline
excitations with soliton theories@3# suggested a plausibl
explanation of the open states of DNA. In these theor
statistical mechanics was not considered and the result
not represent the thermal denaturation of DNA. The Peyr
and Bishop~PB! model was introduced in 1989@4# to take
into account the thermal effect. It consists of two sets
degrees of freedom (un andvn) corresponding to the trans
verse displacements of the bases, i.e., displacements a
the direction of the hydrogen bonds connecting the two ba
in a pair. Harmonic coupling is assumed for the neighbor
bases along the strands with a common coupling constak
and massM for each base. In the PB model, the Morse p
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tential @5# is used for the interstrand hydrogen bonds. Ma
subsequent studies@6,7# of the denaturation of DNA have
been based on this model.

In the following sections, we shall study the Morse pote
tial and the Deng-Fan potential@8# for the interstrand hydro-
gen bonds by calculating the delocalization or melting te
peratures and the interstrand quantities as a function
temperature. The effects of the intrastrand interactions on
interstrand quantities will be mentioned.

II. QUASI-ONE-DIMENSIONAL SYSTEM OF DNA

Let xn5(un1vn)/A2 and yn5(un2vn)/A2, the inter-
strand separation of the base pair beingA2yn . We shall
assume that the DNA helix consists ofN nucleotide base
pairs. The Hamiltonian for the system has the form

H5 (
n51

N H pn
2

2M
1

qn
2

2M J 1H8~xn ,xn21!1 f ~yn ,yn21!,

~1!

where

H8~xn ,xn21!5 (
n51

N
1

2
k~xn2xn21!2,

f ~yn ,yn21!5 (
n51

N H 1

2
k~yn2yn21!21V~yn!J , ~2!

pn5Mẋn and qn5Mẏn are the canonical momenta, an
V(yn) is the interstrand potential for the hydrogen bon
between nucleotide pairs. The statistical mechanics of
model is described by the partition function (b51/kBT)

Z5E
2`

1`

)
n51

N

dxndyndpndqne2bH(pn ,xn ,qnyn)[ZxZyZpZq ,

~3!

wherekB is Boltzmann’s constant. We have imposed pe
odic boundary conditions on the variables. The integrals
the variablespn ,qn ,xn are of Gaussian type and give

Zp5Zq5~2pMkBT!N/2, Zx5~2pkBT/k!N/2. ~4!

The remaining configurational partition functionZy involves
the nonlinear interstrand potential,
©2001 The American Physical Society09-1
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Zy5E
2`

1`

)
n51

N

dyne2b f (yn ,yn21), ~5!

which can be evaluated by using the transfer-integral met
@9# with each integral being defined by

E dyn21e2b f (yn ,yn21)w~yn21!5e2be iw~yn!. ~6!

By expandingw(yn21) in Eq. ~6! aboutyn , we are led, in
the continuum limit, to the following Schro¨dinger-type equa-
tion:

2
1

2b2k

d2w i~y!

dy2
1Ueff~y,b!w i~y!

5e iw i~y!, i 50,1,2, . . . , ~7!

where w i is an eigenfunction with corresponding eigene
ergy e i , andUeff(y,b) is a temperature-dependent effecti
potential,

Ueff~y,b!5V~y!1
1

2b
lnS bk

2p D . ~8!

The Schro¨dinger equation is dependent on the harmonic c
pling constantk which defines the intrastrand nucleotide i
teractions. The solvability of Eq.~7! depends on the inter
strand potentialV(y), for which we shall consider the Mors
and Deng-Fan potentials. Equation~7! also has an effective
massMeff[b2k\2 (\ is Planck’s constant!. As Meff→`,
one expects that the system should be in the conde
phase; this happens whenT→0 or k→`. For the DNA sys-
tem to be in the condensed phase, we require thatT,Td ,
whereTd is the delocalization or melting temperature, and
k→` the system exhibits only the condensed phase for
finite temperatures.

The phase transition of the DNA system is characteri
by the detachment of the two strands. Hence a measure
the transition can be defined by the average

^ym&5

(
n50

N

^wn~y!uymuwn~y!&e2Nben

(
n50

N

^wn~y!uwn~y!&e2Nben

, ~9!

where m is a positive integer. The first-order average (m
51) gives the mean stretchingA2^y& of the hydrogen bonds
as a function of temperature, while the second-order ave
(m52) gives the variance of the separation of the t
strands and provides a simple measure for the difference
tween the two potentials.

We expect that the mean stretchingA2^y& and higher-
order quantitieŝ ym& (m52,3, . . . ) increase with tempera
ture and diverge whenT5Td . Since we are interested in th
thermodynamic limit (N→`), the dominant contribution
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comes from the ground statew0(y) below the melting tem-
perature. For the purpose of comparison, we shall calcu
the first two orders

^ym&5E w0
2~y!ymdy, m51,2, ~10!

for the Morse and Deng-Fan potentials.

A. The Morse potential

We first consider the Morse potential for the interstra
base pairs

V~un2vn!5D@e2a(un2vn2r e)21#2,

2`,un , vn,`, ~11!

where we shall use the values for the parametersD and a
from @4#, D50.33 eV,a51.8 Å21, and the following val-
ues for the coupling constantk: ~a! 231023 eV/Å2, ~b! 3
31023 eV/Å2, ~c! 431023 eV/Å2. The constant r e
51.1 Å denotes the equilibrium separation of the ba
pairs. This potential is plotted in Fig. 1 withk53
31023 eV/Å2.

We definexn5(un1vn)/A2 and yn5(un2vn)/A2, and
let (A2yn2r e)5A2r . Then the Schro¨dinger equation~7! has
the effective potential

FIG. 1. The Morse potentialVM(y) and the Deng-Fan potentia
VDF(y) are plotted with D50.33 eV, a51.8 Å21, k53
31023 eV/Å2, and r e51.1 Å. The inset shows that the Mors
potential remains finite for unphysical negative values ofy.
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Ueff~r ,b!5D@eA2ar21#21
1

2b
lnS bk

2p D . ~12!

Equation~7! with this effective potential can be solved e
actly and has eigenfunctions and eigenenergies as foll
@4,10#:

wn5Nne2j/2jsF~2n,2s11,j!, n50,1,2, . . . , ~13!

en5
1

2b
lnS bk

2p D1
2a

b
AD

k S n1
1

2D2
a2

b2k
S n1

1

2D 2

,

~14!

where

Nn5F 2A2as

n!G~2s1n11!
G1/2

~2s1n!!

~2s!!
~15!

is the normalization constant,j52de2A2ar, d5(b/a)AkD,
s5d2n2 1

2 , and

F~2n,2s11,j!511
~2n!j

2s11
1

~2n!~2n11!

~2s11!~2s12!

j2

2!
1•••

1
~2n!~2n11!•••1

~2s11!~2s12!•••~2s111n!

3
jn

n!
1•••. ~16!

The existence of bound states requires that the parametesbe
positive. Then the number of bound statesn must take only
positive integral values from zero to the greatest value
which d.n11/2. The temperature for the existence of t
nth bound state is defined by

T,
2AkD

~2n11!akB
5Td

(n) , n50,1,2, . . . , ~17!

whereTd
(n) denotes the melting temperature of thenth state.

The melting temperaturesTd
(n) (n50,1,2) are listed in Table

I with the valuesD50.33 eV, a51.8 Å21, and three val-
ues fork. The melting temperature of the ground state is v
much higher than for the excited states, which therefore p
no significant role in the determination of the interstra

TABLE I. Melting temperaturesTd
(n) (n50,1,2) of DNA with

D50.33 eV,a51.8 Å21 and three values fork.

k(eV/Å2)
Potential 231023 331023 431023

Morse Td
(0) ~K! 331.25 405.70 468.46

Td
(1) ~K! 110.42 135.23 156.15

Td
(2) ~K! 66.25 81.14 93.69

Deng-Fan Td
(0) ~K! 288.27 353.06 407.68

Td
(1) ~K! 97.02 118.83 137.21

Td
(2) ~K! 59.67 73.09 84.39
04610
s
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separation. In the thermodynamic limit, the ground st
dominates with the normalized eigenfunction

w0~r !5~A2a!1/2
~2d!d21/2

@G~2d21!#1/2
exp~2de2A2ar!

3expF2S d2
1

2DA2arG ~18!

and eigenenergy

e05
1

2b
lnS bk

2p D1
a

b S D

k D 1/2

2
a2

4b2k
. ~19!

The ground state wave function is plotted in Fig. 2 withk
5331023 eV/Å2 and for the temperatures 200, 300, a
350 K.

The averageŝy& and ^y2& as a function of temperatur
are calculated by

^ym&5E
2`

1`

w0
2~y!ymdy,m51,2, ~20!

wherey5r 1r e /A2. The results are plotted, respectively,
Figs. 3 and 4 fork5231023, k5331023, and andk54
31023 eV/Å2.

FIG. 2. The ground state eigenfunctions in the Morse poten
~MP! and the Deng-Fan potential~DFP! are plotted withk53
31023 eV/Å2 and for several temperatures.

FIG. 3. The averagêy& of the ground state in the Morse an
Deng-Fan potentials is plotted as a function of temperature for th
values ofk.
9-3
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B. The Deng-Fan potential

We next consider the Deng-Fan~DF! or generalized
Morse potential@8#

V~un2vn!5DF12
b

ea(un2vn)21
G 2

, 0,un2vn,`,

~21!

whereb5eare21, andD, a, andr e are constants as define
in the Morse potential. Unlike the Morse potential, the D
potential is defined only for positive values ofyn5un2vn .
As plotted in Fig. 1, the DF potential has a slightly hard
core and a narrower potential well than the Morse poten
We expect a harder core to give a lower delocalization te
perature, since the ground state in the DF potential will
pushed more to positive separation than that in the Mo
potential. This difference can be seen in Fig. 2.

The Schro¨dinger equation has the effective potential

Ueff~y,b!5DF12
b

eA2ay21G 2

1
1

2b
lnS bk

2p D . ~22!

Let

r 51/~eA2ay21!,

m5kb2D/a2,

l 5~11A114mb2!/2,

an5@mb~b12!/~n1l !2~n1l !#/2

andbn5an1n1l .

The wave functions and energies, respectively, read@11#

wn~r !5Nnr an~11r !2bn
2F1

3~2n,2n1122l ;2an11;2r !, ~23!

en5s01D2
a2an

2

kb2
, n50,1,2, . . . , ~24!

where

FIG. 4. The averagêy2& of the ground state in the Morse an
Deng-Fan potentials is plotted as a function of temperature for th
values ofk.
04610
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Nn5FA2a~an1n1l !G~2an1n11!G~2an1n12l !

n! ~n1l !G~2an!G~2an11!G~n12l !
G1/2

is the normalization constant and

2F1~a,b;c;r !5 (
n50

`
~a!n~b!n

~c!n

r n

n!
, ~a!n5

~a1n21!!

~a21!!
,

~25!

is the hypergeometric function. For bound states, we m
have integral valuesn such thatn,Amb(b12)2l , which
gives

l >
1

4
~b1212nb!1

1

4
Ab~b12!~2n11!212b14[l 1 .

Thus, for thenth bound state, we must have a temperat
such that

T,
AkD

akB

b

Al 1~ l 121!
[Td

(n) , ~26!

whereTd
(n) denotes the melting temperature of thenth state.

For the first three states, the temperaturesTd
(n) (n50,1,2) are

tabulated in Table I.
In the thermodynamic limit, we need to consider only t

ground state with eigenfunction and eigenenergy

w0~r !5N0r a0~11r !2b0, e05
1

2b
lnS bk

2p D1D2
a2a0

2

kb2
,

~27!

where

N05F A2ab0G~2b0!

l G~2a0!G~2l !
G1/2

, a05
1

2 Fmb~b12!

l
2l G ,

b05a01l . ~28!

To describe the state of DNA below the melting temperatu
the ground state is used to calculate the averages

^ym&5E
0

1`

w0
2~y!ymdy, m51,2,

where y5 ln(111/r )/A2a. These averages are plotted
Figs. 3 and 4 as a function of temperature fork5231023,
k5331023, andk5431023 eV/Å2.

III. CONCLUSIONS

The main physical property of the phase transition in
quasi-one-dimensional system of DNA is characterized
the detachment of the DNA strands. Thus, we have ca
lated the ground state wave functions and the interstr
quantities^y& and ^y2& as a function of temperature.

The ground state eigenfunctions are plotted in Fig. 2
several temperatures. At low temperatures, the peaks of
ground states are centered at about the equilibrium sep

e
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tion r e51.1 Å. As the temperature increases, the grou
state wave functions become less localized, and the w
function in the DP potential delocalizes before that in t
Morse potential.

Table I indicates that for the same melting temperatur
smaller k is needed for the Morse potential than for t
Deng-Fan potential. In particular,k5331023 eV/Å2 for
the Morse potential givesTd5405.70 K, while k54
31023 eV/Å2 for the Deng-Fan potential givesTd
5407.68 K. This feature is also reflected in Figs. 3 and
where the Morse potential withk5331023 eV/Å2 gives
about the same physical aspects as the DF potential wik
5431023 eV/Å2. Therefore, a stronger intrastrand co
pling is needed for the DF potential.

The melting temperatureTd is seen to behave asTd}Ak.
Thus, if the coupling strength of the covalent bonds along
DNA strands increases indefinitely, one of the two dime
sions freezes out and the system becomes one dimensi
In essence, this corresponds to an infinite effective massMeff
in the Scho¨dinger equation, and we expect no denaturati
Thus, the transition depends on the intrastrand dimens
although the detachment of the strands occurs in the in
strand dimension.

We mention that other solvable potentials that exh
m

,

m
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thermal denaturation can be considered. For example, in@12#
a potential based on the superalgebra formalism was stud
this potential has a very different form from the potentia
studied here. All exactly solvable potentials provide only a
proximations to the real DNA system. A comparative stu
of solvable potentials should provide useful understanding
the dynamics of DNA.

Finally, we note that in order to account for other effec
such as the stacking energy between two neighboring b
pairs, a modified model with an anharmanic potential
nonhydrogen bonds has been considered in conjunction
the Morse potential@6,7#. However, solving this system re
quires numerical methods, and the determination of all
parameters in the model for comparing the theory with
periments is still outstanding. Also, a more useful mod
should include the effect of the heterogeneous seque
composition of DNA@13#.
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